If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+24H+15
We move all terms to the left:
-(-16H^2+24H+15)=0
We get rid of parentheses
16H^2-24H-15=0
a = 16; b = -24; c = -15;
Δ = b2-4ac
Δ = -242-4·16·(-15)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-16\sqrt{6}}{2*16}=\frac{24-16\sqrt{6}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+16\sqrt{6}}{2*16}=\frac{24+16\sqrt{6}}{32} $
| 2c+(3c-4)=(-1)*(-4) | | k/9-82=-77 | | M2=3x+18 | | 6-9r=78 | | 5x2+10x+5/10*5(x+1)−4(52−1)/5+1=0 | | 2c+3c-4=(-1c)-4 | | 25=h/2+19 | | v/10+65=74 | | 2/3x-1/3+11=8 | | 2c+(3c-4)=(-4)-4 | | (x+3)(x-1)=x2+5 | | 49=h/7+45 | | 81÷p=9 | | 6.91=1.45+0.42x | | 8u+5=53 | | M1=1x+10 | | m^2-m=2/3 | | 2x/3+5x/6=1/2 | | h/4+14=12 | | 21q-39=234 | | -x+-8=0 | | j/6+16=21 | | 2=-9x+22-x | | y/6+12=17 | | 8p+2=4p−10 | | 3y=2.4-1.6y | | 6x-4=15-67 | | 8x-6x+8=15x-2x+9 | | 2(u+6)+2u=16 | | Y=Y=-x+7 | | 2=2(v-8)-8v | | 3(2.4x+4)=4.1x+7+3.1 |